Здорового образа жизни

Поиск

Интересно

{T_LINK}

Популярное

Календарь

«    Сентябрь 2014    »
ПнВтСрЧтПтСбВс
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 

ХирургияКислородно-транспортная функция крови

  • Теги:
  •  (голосов: 1)
Переносчиком кислорода является гемоглобин. Он состоит из двух частей: присоединяющейся группы — гема и белковой части — глобина. Гем в молекуле гемоглобина составляет 4%, а глобин — 96%
В состав гема входит двухвалентное железо. Красный (пурпурный) цвет гема обусловлен порфирином IX, содержащим двухвалентное железо, которое в 1000 раз активнее его неорганической формы. Гем имеет в диаметре 1,5 нм, а в высоту—0,37 нм и помещается в углублении глобина, в «кармане». Глобин состоит из 574 различных аминокислот, из которых основная — гистидин.
В «кармане» между гемом и глобином имеется пространство, которое занимает кислород. Важно отметить, что О2 не окисляет железо. Оно остается двухвалентным и при образовании метгемоглобина не переходит в трехвалентное. «Карман», в котором находится кислород, заполнен водой. Он может увеличиваться или уменьшаться в зависимости от того, в какой фазе находится гем, который может активно погружаться в него, сжимая канал, или выходить из него, соответственно расширяя. При этом пептидные спирали глобина разворачиваются, а затем сворачиваются, что придает гемоглобину определенную жизнедеятельность, он «дышит», т.е. происходит сжимание полости при поступлении в нее О2 (оксигемоглобин), а при выходе его из кармана — расширение; его место занимает 2, 3-дифосфоглицерат (2,3=ДФГ).

Кислородно-транспортная функция крови


Модель молекулы гемоглобина

2,3-ДФГ находится в конкурентных [Дервиз Г.В. и др., 1957] отношениях с кислородом за обладание карманом, от чего зависит способность гемоглобина отдавать тканям организма кислород. При малой концентрации 2,3-ДФГ он не в состоянии вытеснить кислород из канала и занять его место. Кислород остается в канале, ткани его не получают, сродство его с гемом возрастает. Молекула гемоглобина имеет четыре гема. На рис. 4 представлено их пространственное взаимоотношение.
Связывание кислорода с одним гемом облегчает дальнейшее связывание его с другим гемом, т.е. по мере насыщения гемоглобина кислородом их сродство усиливается. Это получило четкое графическое изображение в виде специфической S-образной кривой диссоциации оксигемоглобина (рис. 5). Следовательно, гемоглобин отдает кислород на уровне тканей не прямо пропорционально напряжению его в крови, а в соответствии с формой кривой диссоциации оксигемоглобина [Серафимов-Димитров В., 1974].
Смещение кривой диссоциации оксигемоглобина вправо или влево зависит от ряда факторов. К ним относятся: 1) концентрация гемоглобина, при повышении которой кривая принимает форму гиперболы со смещением влево; 2) концентрация свободных SH-групп, при повышении которой кривая смещается вправо; 3) содержание 2,3-ДФГ, при снижении концентрации которого кривая смещается влево и фодство гемоглобина к кислороду усиливается; 4) концентрация в крови ионов H+— протонов (при ацидозе кривая смещается вправо, при алкалозе — влево); 5) концентрация электролитов в крови, т.е. степень разведения крови: чем больше степень гемодилюции, тем больше смещение кривой диссоциации оксигемоглобина вправо; 6) температурный фактор сдвигает кривую вправо при снижении или влево — при повышении.


Кривая диссоциации выражает исключительно высокую приспособляемость гемоглобина к экстремальным условиям и значительный запас «прочности» в его функции. Так, при снижении напряжения кислорода (РО2) в крови с 14,7 до 9,3 кПа (со 110 до 70 мм рт. ст.) насыщение крови кислородом (НЬОа) уменьшается всего на 5%. Наоборот, при рассмотрении нижнего отдела кривой видно, что снижение РО2 на ту же величину — 5,3 кПа (40 мм рт. ст.) сопровождается потерей насыщения на 70%, но на этом уровне кривой особого значения для организма не имеет [Горжейши Я. и др., 1967].
Кислородно-транспортная функция крови (КТФ) осущеявляется гемоглобином, который переносит О2 от легких к тканям взамен на СО2, который он элиминирует затем в легких. Эффективность КТФ крови определяется многими факторами, связанными как с внешними условиями (состав воздуха, атмосферное давление и др.), так и с внутренними (состояние легочного кровообращения и т.д.). КТФ крови характеризует ряд показателей, цифровые значения которых позволяют судить о степени эффективности снабжения тканей кислородом.
Напряжение кислорода в крови (РО2) зависит от парциального давления О2 в воздухе, вдыхаемом больным. Кроме того, имеют значение минутный объем дыхания и МОК. В артериальной крови в норме РО2 равно 12 кПа (90 мм рт. ст.), в венозной — 5,3 кПа (40 мм р,т..ст.).
Насыщение крови кислородом (НbО2) обусловливается парциальным давлением O2 и является его функцией. Кроме того, НbО2 зависит от легочной вентиляции и состояния альвеол, легочного кровотока, Ро2 в венозной крови и притока ее к легким и т.д. В артериальной крови насыщение кислородом составляет 95—97%, в венозной — 60—70%.
Содержание кислорода в крови (в процентах по объему), или кислородная емкость, находится в зависимости от двух факторов: количества гемоглобина в крови и насыщения его кислородом. Кислородная емкость 1 г гемоглобина равна 1,34 (при 100% насыщении крови) (1,3395 см3O2). Следовательно, должная величина кислородной емкости крови составляет произведение: Нbх1,34, или (при Нb=150 г/л) 150х1,34=0,201 л О2 в 100 мл крови, т.е. 20,1% по объему.

В норме кислородная емкость артериальной крови равна 18—19, венозной — 12—14% по объему.
Артериовенозная разница по кислороду (А—В) отражает то количество кислорода, которое используют ткани организма для своей жизнедеятельности из каждых 100 мл протекающей через них крови. В норме А — В равна 5—6% по объему.
Как видно из артериовенозной разницы, ткани утилизируют не весь кислород, подвозимый им гемоглобином, а лишь его часть. Следовательно, если в артериальной крови кислорода имеется почти 20% по объему, а утилизируется в тканях 5% по объему, то расход кислорода составляет 25%. Отсюда следует, что из 4 гемов работает (отдает тканям кислород) только один, а остальные обеспечивают «запас прочности» организма по кислороду.
Потребление кислорода, кроме функционального состояния гемоглобина, в определенной мере отражает компенсаторную роль центральной гемодинамики. Кроме того, потребление кислорода в минуту указывает, какое количество кислорода утилизируется тканями организма не только из каждых 100 мл протекающей крови, но из всего ОЦК за единицу времени, т.е. из МОК. Увеличение МОК может компенсировать недостаток кислорода в крови. В норме потребление кислорода в минуту составляет в среднем 250—300 мл.